

1000BASE-SX SFP 850nm 550m DDM MMF Transceiver P/N: AE-SFP-SX

Features

- Data-rate of 1.25Gbps operation
- 850nm VCSEL laser and PIN photodetector
- Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- 550m transmission with 50/125µm MMF
- 275m transmission with 62.5/125µm MMF
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature: Standard: 0 to +70°C Extended: -40 to +85°C

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

I. Absolute Maximum Ratings

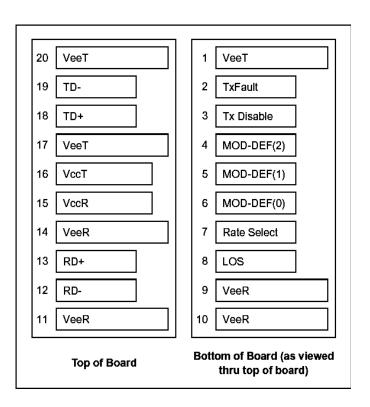
Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

II. Optical and Electrical Characteristics

Pai	rameter	Symbol	Min	Typical	Max	Unit	Notes
		Tra	ansmitter			1	'
Centre	Wavelength	λc	830	850	860	nm	
Spectral	Width (RMS)	Δλ			0.85	nm	
Average	Output Power	Pout	- 9.5		-3	dBm	1
Extino	ction Ratio	ER	9			dB	
	Rise/Fall Time %~80%)	tr/tf			0.26	ns	
Data Input S	Swing Differential	VIN	400		1800	mV	2
Input Differe	ential Impedance	ZIN	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
I A Disable	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
I A Fauit	Normal		0		0.8	V	
		R	eceiver				
Centre	Wavelength	λc	770		860	nm	
Receive	er Sensitivity				-17	dBm	3
Receive	Receiver Overload		-3			dBm	3
LOS De-Assert		LOSD			-18	dBm	
LOS Assert		LOSA	-35			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swing Differential		Vout	400		1800	mV	4
	LOS	High	2.0		Vcc	V	
	LO3				0.8	V	

Notes:

- 1. The optical power is launched into MMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 27-1 test pattern @1250Mbps, BER $\leq 1 \times 10$ -12.
- 4. Internally AC-coupled.


III. Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms

Tx Fault Assert Time	t_fault		100	μs
Tx Disable To Reset	t_reset	10		μs
LOS Assert Time	t_loss_on		100	μs
LOS De-assert Time	t_loss_off		100	μs
Serial ID Clock Rate	f_serial_clock		400	KHz
MOD_DEF (0:2)-High	VH	2	Vcc	V
MOD_DEF (0:2)-Low	VL		8.0	V

IV. Pin Definitions

V. Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VEER	Receiver ground	1	
10	VEER	Receiver ground	1	
11	VEER	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5

13	RD+	Received Data Out	3	Note 5
14	V_{EER}	Receiver ground	1	
15	Vccr	Receiver Power Supply	2	
16	Vсст	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V_{EET}	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1. TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined

High (2.0 to 3.465V): Transmitter Disabled
Open: Transmitter Disabled

3. Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4. LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5. RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

VI. Ordering information

Part Number	Product Description		
AE-SFP-SX	SFP, 1.25Gb/s, 850nm, MMF, 550m, DDM, LC connector, 0 to 70°C		
AE-SFP-SXI	SFP, 1.25Gb/s, 850nm, MMF, 550m, DDM, LC connector, -40°C to 85°C		