

BIDI SFP 1490nm-TX/1310nm-RX 20km SMF Transceiver P/N: AE-SFP-BX20-D-49

Features

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- 1490nm DFB laser and PIN photodetector for 20km transmission
- Compliant with SFP MSA and SFF-8472 with simplex LC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature: Standard: 0 to +70°C Extended: -40 to +85°C

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

I. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

II. Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	Та	0		+70	°C
	Industrial	Tc	-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		lcc			300	mA
Data Rate				1250		Mbps

III. Optical and Electrical Characteristics

Para	ameter	Symbol	Min	Typical	Max	Unit	Notes
		-	Transmit	tter			
Centre \	Navelength	λc	1470	1490	1510	nm	
Spectral	Width (RMS)	Δλ			4	nm	
Average (Output Power	Pout	-9		-3	dBm	1
Extinc	tion Ratio	ER	9			dB	
	ise/Fall Time %∼80%)	tr/tf			0.26	ns	
Data Input S	wing Differential	Vin	400		1800	mV	2
Input Differe	ntial Impedance	Zin	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
I A DISADIE	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
I A Fault	Normal		0		0.8	V	
			Receive	ər			
Centre \	Navelength	λς	1260	1310	1360	nm	
Receive	r Sensitivity				-23	dBm	3
Receive	er Overload		-3			dBm	3
LOS E	LOS De-Assert				-24	dBm	
LOS	SAssert	LOSA	-30			dBm	
LOS Hysteresis			1		4	dB	
Data Output S	Data Output Swing Differential		400		1800	mV	4
	08	High	2.0		Vcc	V	
LOS		Low			0.8	V	

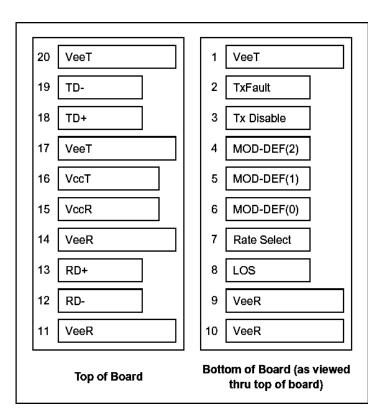
Notes:

1. The optical power is launched into SMF.

2. PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 27-1 test pattern @1250Mbps, $BER \le 1 \times 10-12$.

4. Internally AC-coupled.


Aerech Networks | www.aerech.com | sales@aerech.com | +86 18124029095

IV. Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	Vн	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

V. Pin Definitions

VI. Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	Veet	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3

Aerech Networks | www.aerech.com | sales@aerech.com | +86 18124029095

BIDI SFP 1G 20KM

5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VEER	Receiver ground	1	
10	VEER	Receiver ground	1	
11	VEER	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VEER	Receiver ground	1	
15	Vccr	Receiver Power Supply	2	
16	Vсст	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VEET	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

1) TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2) *TX* Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k \sim 10k\Omega$ resistor. Its states are:

Low (0 to 0.8V):Transmitter on(>0.8V, < 2.0V):</td>UndefinedHigh (2.0 to 3.465V):Transmitter DisabledOpen:Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 *is grounded by the module to indicate that the module is present*

Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

4) LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.

5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.

6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

VII. Ordering information

Part Number	Product Description
AE-SFP-BX20-D-49	BIDI SFP, 1.25 Gb/s, 1490nm, SMF, 20km, DDM, LC connector, 0°C to +70°C
AE-SFP-BX20-D-49I	BIDI SFP, 1.25 Gb/s, 1490nm, SMF, 20km, DDM, LC connector, -40°C to +85°C