BIDI SFP 1310nm-TX/1550nm-RX 10KM SMF Transceiver P/N: AE-SFP-BX10S-U

Features

- Dual data-rate of $1.25 \mathrm{Gbps} / 1.063 \mathrm{Gbps}$ operation
- 1310nm FP laser and PIN photodetector for 10km transmission
- Compliant with SFP MSA and SFF-8472 with simplex SC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature: Standard: 0 to $+70^{\circ} \mathrm{C}$, Industrial: -40 to $+85^{\circ} \mathrm{C}$

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

I. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	${ }^{\circ} \mathrm{C}$
Operating Humidity	-	5	85	$\%$

II. Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	Tc	0		+70	${ }^{\circ} \mathrm{C}$
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		Icc			300	mA
Data Rate	Gigabit Ethernet			1.25		Gbps
	Fiber Channel			1.063		

III. Optical and Electrical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Transmitter						
Centre Wavelength	$\lambda \mathrm{c}$	1260	1310	1360	nm	
Spectral Width (RMS)	$\Delta \lambda$			4	nm	
Average Output Power	Pout	-9		-3	dBm	1
Extinction Ratio	ER	9			dB	
Optical Rise/Fall Time (20\%~80\%)	tr/tf			0.26	ns	
Data Input Swing Differential	VIN	400		1800	mV	2
Input Differential Impedance	Z_{IN}	90	100	110	Ω	
TX Disable Disable		2.0		Vcc	V	
TX Disable Enable		0		0.8	V	
TX Foult Fault		2.0		Vcc	V	
TX Fault Normal		0		0.8	V	
Receiver						
Centre Wavelength	λc	1530		1570	nm	
Receiver Sensitivity				-22	dBm	3
Receiver Overload		-3			dBm	3
LOS De-Assert	$\mathrm{LOS}_{\text {D }}$			-23	dBm	
LOS Assert	$L^{\text {LOS }}$ A	-35			dBm	
LOS Hysteresis		1		4	dB	
Data Output Swing Differential	Vout	400		1800	mV	4
LOS	High	2.0		Vcc	V	
	Low			0.8	V	

Notes:

1. The optical power is launched into SMF.
2. PECL input, internally $A C$-coupled and terminated.
3. Measured with a PRBS 27-1 test pattern @ $1250 \mathrm{Mbps}, B E R \leq 1 \times 10-12$.
4. Internally $A C$-coupled.

IV. Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	$\mu \mathrm{~s}$
Time To Initialize, including Reset of Tx	t_init			300	ms
Fault	t_fault			100	$\mu \mathrm{~s}$
Tx Fault Assert Time	t_reset	10			$\mu \mathrm{~s}$
Tx Disable To Reset	t_loss_on			100	$\mu \mathrm{~s}$
LOS Assert Time	t_loss_off			100	$\mu \mathrm{~s}$
LOS De-assert Time	t_serial_clock			400	KHz
Serial ID Clock Rate	VH	2		Vcc	V
MOD_DEF (0:2)-High	VL			0.8	V
MOD_DEF (0:2)-Low					

V. Pin Definitions

VI. Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1

3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	Veer	Receiver ground	1	
10	Veer	Receiver ground	1	
11	Veer	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	Veer	Receiver ground	1	
15	VCcR	Receiver Power Supply	2	
16	Vcct	Transmitter Power Supply	2	
17	Veet	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	Veet	Transmitter Ground	1	

Notes:
Plug Seq.: Pin engagement sequence during hot plugging.

1) TX Fault is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \mathrm{\sim 10k} \mathrm{\Omega}$ resistor on the host board to a voltage between 2.0 V and $V c c+0.3 \mathrm{~V}$. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8 V .
2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor. Its states are:
Low (0 to 0.8V): Transmitter on
($>0.8 \mathrm{~V},<2.0 \mathrm{~V}$): Undefined
High (2.0 to 3.465V): Transmitter Disabled
Open: Transmitter Disabled
3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
Mod-Def 0 is grounded by the module to indicate that the module is present
Mod-Def 1 is the clock line of two wire serial interface for serial ID
Mod-Def 2 is the data line of two wire serial interface for serial ID
4) LOS is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor. Pull up voltage between 2.0 V and $V c c+0.3 \mathrm{~V}$. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8 V .
5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.
VII. Ordering information

Part Number	Product Description
AE-SFP-BX10S-U	BIDI SFP, $1.25 \mathrm{~Gb} / \mathrm{s}, 1310 \mathrm{~nm}$, SMF, 10 km, DDM, SC connector, $0^{\circ} \mathrm{C} \mathrm{to}+70^{\circ} \mathrm{C}$
AE-SFP-BX10S-UI	BIDI SFP, $1.25 \mathrm{~Gb} / \mathrm{s}, 1310 \mathrm{~nm}$, SMF, 10 km, DDM, SC connector, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

